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‘We present a density-functional approach for the Helmholtz free energy of simple liquids, based
on the separation of attractive and repulsive interactions and within the framework of the weighted-
density approximations. The approach reduces to the standard perturbation theory of simple fluids
for the homogeneous vapor and liquid phases. It gives a good description of the correlation structure
in the crystal, based on a local-compressibility equation. The phase diagram of a Lennard-Jones
system is obtained and compared with a computer simulation.
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Since the work of Ramakrishnan and Yussouff [1], most
theoretical studies of solid-fluid phase transitions have
been based on the density-functional formalism. The
solid is described as a system with periodically modulated
density distribution p(r) and its free energy is obtained
from a density functional F'[p]. The strong modulations
of the solid density distribution forbid the use of sim-
ple approximations for F[p], such as gradient expansions,
which have been successfully used for other problems.
Thus the study of freezing, besides its intrinsic interest,
is a touchstone in the development of new approxima-
tions for free-energy density functionals which may be
later used in other problems such as interfaces and cap-
illarity [2].

Three main groups of approximations for F[p] have
been developed in this context, all of them based in the
idea that a good description of the thermodynamics prop-
erties of inhomogeneous phase can be obtained from the
structural properties of a homogeneous phase. The first
approximation follows the original approach [1] with the
expansion of the free energy around that of a homoge-
neous system; in practice this expansion is truncated at
second or third order. The nonlocal dependence of F
on p(r) appears through the direct correlation function
(related to the second functional derivative of F[p]) in
the homogeneous system [1, 3]. However, the functional
expansions may have fundamental problems of conver-
gence [4, 5]. In view of these difficulties two new groups
of approximations were open. One, known under the gen-
eral name of “weighted-density approximation” (WDA)
[6-8] is based on the idea of a local free-energy density
evaluated at a weighted density, p(r), which is a rela-
tively weakly varying function of the position. The non-
local dependence of F[p] is introduced through the re-
lationship between p(r) and p(r). The last type of ap-
proach, the “effective-liquid approximation” (ELA) [9],
starts from the free energy obtained by the integration
of the direct correlation function, this one being approx-
imated by that of an effective liquid. As in the first case,
the nonlocal dependence of F' on p(r) appears through
the direct correlation function of the homogeneous lig-
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uid [10]. From another point of view we can distinguish
between global approaches, in which the inhomogeneous
phase maps onto a single homogeneous liquid phase [1,
3-5] and the WDA in which there is a position-depending
map. A global version of the WDA, the modified WDA
(MWDA), was also developed by Denton and Ashcroft
[11]. Although global approaches require lighter compu-
tation efforts than WDA they reduce the applicability
mainly to macroscopically homogeneous phases; for in-
stance, to describe an interface the two bulk coexisting
phases would have to be mapped onto the same homo-
geneous liquid, which is generally a poor approximation.
The global approach based in the free-energy expansion
has been generalized in order to describe the solid-fluid
interface though with less success than the WDA [3]. A
recent review of the subject is given by Baus [12].

Many studies were devoted to the freezing of hard
spheres (HS), as the basic reference system in the the-
ory of simple fluids, and it is now clear that a good
description of this problem may be obtained with the
advanced versions of both the ELA and the WDA ap-
proaches. However, it has been recently found by
Kuijper et al. [13] and Laird and Kroll [14] that theories
with global character may fail to predict freezing prop-
erties of soft repulsive potentials. Some of them fail even
to predict any liquid-solid transition in all cases stud-
ied (soft spheres, inverse powers, and truncated Lennard-
Jones). The difficulties of the global approach increase
when attractive interactions are included: Kyrlidis and
Brown have found that for Lennard-Jones potential they
cannot give the necessary thermodynamic mapping [15]
and the MWDA fails even to predict crystallization of
Lennard-Jones systems at low temperatures [13]. Non-
global approaches have not been applied to these systems
but they would probably show the same difficulties. Fur-
thermore all the density-functional approaches discussed
above are based in some kind of solid-fluid mapping. For
systems with attractive interactions this seems awkward
because the free energy as a function of the density is not
defined in the large density gaps produced by condensa-
tion. A promising approach which avoids all the above
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difficulties is the separation of repulsive and attractive
interactions, following the perturbation scheme success-
fully used in uniform liquids [16, 17] and generalized for
inhomogeneous fluids [18, 19] as the density-functional
approximation:

Fld = Rl +} [drar’ s®0xi o) B0 -x),

(1)

where Fy[p] is the Helmholtz free-energy density func-
tional for the reference system. The repulsive cores are
approximated by a HS system and F,.[p] may be ob-
tained from any of the well-tested versions of the WDA.
The attractive part of the interaction potential ®, is in-
cluded in the Helmholtz free-energy functional at first
order in perturbation theory and p&z) (r,r’;[p]) is the
pair distribution function in the reference system also
as a functional of the density distribution p(r). The
simplest possible approximation for the pair distribu-
tion function is to fully neglect the correlation structure
and take p® (r,r’;[p]) = p(r) p(r'). This is commonly
termed a van der Waals theory of nonuniform fluids [2].
For a homogeneous reference fluid of density po we have
o@D (r,r’; po) = p& g-(| r — ' |, po), in terms of the radial
distribution function, which for HS is well known. This
knowledge may be used to go a step further than the van
der Waals approximation in the perturbation theory for
inhomogeneous fluids taking [18, 19]:

P2 (x,v'; [p]) = p(r)p(r')gr(| ¥ — 1’ |, B), (2)

with the radial distribution function of the reference uni-
form fluid, g,(r, po), at some effective density, p, which
may depend on the position and is a functional of the
density distribution. The application of the perturbation
density functional [(1) and (2)] to systems with smooth
density distributions, such as the liquid-vapor interface,
produced good results with simple choices for the effec-
tive density in (2), such as the local density, p = p(r),
or other symmetrized forms such as p = [p(r) + p(r’)]/2
or p = p[(r +r’)/2]. However, the application of this ap-
proach to a crystal phase was hindered by the difficulty
in finding an appropriate effective density.

A perturbation theory has already been pursued by
Weis [20] and Ree and co-workers [21] to study the prop-
erties of a Lennard-Jones crystal and its solid-fluid tran-
sition. These authors proceed with the usual steps of the
perturbation theory including the approximation of the
reference fluid by a HS one, but contrary to the density-
functional approach, in which the free energy (1) is mini-
mized with respect to the density distribution p(r), they
evaluate the contribution from the attractive perturba-
tion potential with the equilibrium pair distribution func-
tion of the reference HS crystal at the same mean density.
Both F, and p®(r,r') are obtained from Monte Carlo
simulations of the HS crystal and used to get the ther-
modynamics of the Lennard-Jones system. This is the
usual procedure in the perturbation theory for homoge-
neous fluids, extended to the solid phase as a homoge-
neous phase at macroscopic level. However, the modern
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theory of crystallization, based on the description of the
solid as a self-structured fluid, requires a perturbation
theory within the density-functional formalism. Only
in this way may we obtain both the thermodynamics
and the structure of a solid phase consistently, through
the minimization of the free-energy density functional.
Futhermore, in the functional approach the free energy
and the radial distribution function of HS are obtained
from the theory itself instead of taking them as external
inputs from Monte Carlo data.

The density-functional perturbation theory proposed
here is based on the same scheme [(1) and (2)] used for
the liquid-vapor interface but with a better choice for
the effective density p in (2). It is obvious that in a
crystal we cannot use any recipe based on the local den-
sity, p(r), which may be a hundred times larger than the
maximum mean density in homogeneous HS systems. A
more promising choice could be to identify p with the
mean density of the solid or the local weighted density
p(r) used in the WDA. However, any of these choices
produces a gross overestimation of the first-order contri-
bution from the attractive interactions in the solid. The
reason is that in the crystal, as described in the density-
functional formalism, most of the structure in p(® (r,r’)
is already included in p(r) while in the homogeneous fluid
all the structure is in the function g(Jr—r’|, po). As a lim-
iting case, in a classical crystal at zero temperature p(r)
is a sum of § functions at the lattice sites and the pair
distribution function p( (r,r’) is the sum of § function
products at any pair of different sites. Thus the correla-
tion is only the exclusion of double occupancy of a lattice
site, which may be described by a steplike function or by
the limit 4 = 0 in (2). Therefore the use of a pertur-
bation scheme for the attractive interactions in the solid
requires a prescription for the correlation function in the
HS crystal very different from that of a dense fluid. This
was included in an empirical way in the early work by one
of us [6], through the use of different effective interactions
in the solid and in the fluid phases. In a more elaborated
theory, Curtin and Ashcroft [22] get excellent results for
freezing of a Lennard-Jones fluid, with an empirical ex-
pression for the direct correlation function in the solid.
Besides their partially ad hoc choice, the main drawback
of their approach is that it goes back to the “global char-
acter” by including the difference between the solid and
the fluid density distributions as the expansion variable.
Thus the approach becomes a workable and accurate the-
ory of freezing but it does not provide a general density
functional for a system with attractive and repulsive in-
teractions. The reader should be aware that what is re-
ported as g(r), from Monte Carlo simulations for HS, by
Weis [20] and Ree and co-workers [21] corresponds to the
angular average of p(r)g(r)/po in our notation (pp being
the mean density of the solid).

Our proposal here is free of ad hoc approximations
and it gives a good representation of the pair distribu-
tion function in a crystal. The idea is a generalization
of the WDA first proposed by Gunnarsson, Jonson, and
Lundgqvist [23] for the electron fluid. It takes the form

(2) to approximate p,(?) (r,r’), with a position-dependent
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A(r) determined by the exact “local-compressibility” rela-
tion (see the Appendix), which generalizes that of “local
charge neutrality” [23]:

[ awoalonC v =)o) 1) = -1+ 225 260

p(r) du

i

©)
where pu is the chemical potential. Although the choice of
p as a function of r violates the exact symmetry g(r,r’) =
g(r’,r), this is a reasonable simplification very common
both in classical fluids and in the electron gas theories.
Equation (3) reduces to the well-known compressibility
equation [16] for uniform systems, with the isothermal
bulk compressibility xr = p~2 dp/du. If the reference
fluid free energy F,. in (1) is described with any version
of the WDA, we may approximate the right-hand side of
(3) by its “local thermodynamics” value:

5 L~ o) xr (o)), @)

p(r)

with the same weighted density p(r) used to evaluate
the free-energy density in F,.. This completes our pro-
posed perturbation WDA (PWDA) for the contribution
of the attractive interactions to the free energy of a sim-
ple fluid. Notice that (3) comes from an exact equation
for p®(r,r’) and, as commented below, (4) does not ap-
preciably affect the results. The main approximation is
to represent p£2)(r, r') by (2), in terms of the isotropic ra-
dial distribution function of a fluid, and the crucial point
in the PWDA is that the effective density, (r), which
satisfies [(3) and (4)] includes the effect described above:
the weak structure of the pair correlation in the crystal,
compared with that of a dense fluid.

We apply the PWDA to obtain the phase diagram of
a Lennard-Jones (LJ) system. The interaction potential
is split as in the Andersen-Chandler-Weeks perturbation
theory [17]. The function g,(r,p) is obtained from the
Verlet-Weis [24] approximation for HS and the Boltz-
mann factor of the soft repulsive potential, as usual in
perturbation theory of simple liquids [16,17]. To sim-
plify calculations the reference system is approximated
by a HS fluid with the Barker-Henderson criterium [16]
to determine the diameter (as in Ref. [22]). This cri-
terium only depends on the interaction potential and the
temperature. Thus in the minimization of the free en-
ergy at each temperature the HS diameter is constant,
otherwise it would entangle the numerical calculations.
An effort to improve the determination of the HS diam-
eter is in progress. We take F. in (1) as that of HS with
the WDA version developed in [8] (other versions, with
their relative merits and disadvantages, might also be
used within our general scheme).

The density distribution in the crystal is parametrized
by Gaussian peaks in a fcc lattice and the total free en-
ergy is minimized with respect to the Gaussian width
parameter [6-8] . To evaluate the contribution of the at-
tractive interactions in (1) we have to solve [(3) and (4)]
for p(r) at each point. Figure 1 shows the values of this ef-
fective density, for a typical crystal density, as a function
of the distance to a lattice point along several directions.
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The most important point is that in the neighborhood of
the Gaussian peak g is only about 0.05, to be compared
with g ~ 0.32 and the mean density p; = 1.0 (all in units
of the LJ parameter o). As expected, the results of [(3)
and (4)] reflect that most of the pair distribution struc-
ture in the crystal is already built in the function p(r).
The growth of 4(r) when moving away from the Gaus-
sian center is relatively isotropic, which suggests a useful
approximation to simplify the numerical calculations: for
r in the Wigner-Seitz cell around the lattice site R we
take

p(x) = po+ 144 | r—R[2. (5)
We checked that this approximation is good at the typi-
cal conditions of the solid phase, and we use it to get the
phase diagram. Another numerical simplification, with-
out appreciable change in the results, is to take the right-
hand side of (3) to be just —1, neglecting the contribution
from the compressibility which is of order 0.01.

Figure 2 shows the phase diagram of the Lennard-
Jones system with our theory compared with simulation
data [25]. The agreement is good at the temperature
range of interest and excellent for the determination of
the triple point temperature. The coexisting densities
are slightly shifted but the density change at coexistence
is very accurate. At high temperatures the transition is
dominated by the underlying HS system and it is not
very accurate due to our simplified treatment of F,.. The
pressure and latent heat results (in Table I) are in rea-
sonable agreement with those of the simulation and show
the same behavior with temperature. The results for the
Lindemann parameter are very sensitive to the details of
the model.

The overall accuracy of the PWDA is clearly better
than that obtained with the early “global expansion”
treatments [26] and almost comparable to that of Curtin
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FIG. 1. Effective density p from [(3) and (4)] in the solid

coexisting with liquid at kT = 1.0 ( in units of LJ parameter
o3). The distance r to a lattice site goes along three symmet-
ric directions: cube edge (circles), face diagonal (squares),
and cube diagonal (triangles). The dashed line is the angular
averaged weighted density, p(r). The dotted line is a Gauss-
ian function with the same width as those in the variational
density distribution (with arbitrary vertical scale), to show
the isotropy of 5(r) over the region with not negligible den-
sity.
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FIG. 2. Phase diagram of the Lennard-Jones system from
the PWDA (open circles with the solid line as a guide to the
eye) and as found in simulation studies [25] (triangles).

and Ashcroft [22], but the empirical expression for the
direct correlation function proposed there has been re-
placed by an approximation with clear physical interpre-
tation, which yields a good representation of the corre-
lation function in the crystal. The merit of [(3) and (4)]
goes beyond being a way to get a low effective density in
(2). We have checked that the phase diagram obtained
with the empirical approach of taking p = 0 in the solid
is quite bad. Even the milder approximation of neglect-
ing the quadratic term in (5) has an appreciable effect
in the quality of the results. The local compressibility
equations [(3) and (4)] give a fine tuning of the corre-
lation function in the crystal, which is reflected in the
accurate results of the PWDA. Moreover, they provide
a workable density-functional approximation which may
be directly applied to the study of interfaces, including
the problem of surface melting. The global expansion
around a homogeneous density, as used by Curtin and
Ashcroft [22], makes impossible its direct application to
the study of the vapor-solid interface without some extra
empirical choice for this density expansion, which also
changes the bulk phase diagram [27]. Finally, our results
provide a hint to the origin of the problems found in the
mapping between thermodynamics and structure for flu-
ids with attractive interactions. The description of the
free energy of a HS solid requires a dense effective lig-
uid, but its correlation structure may only be described
by the radial distribution function of a low density fluid.
The contributions to the free energy from the attractive
and the repulsive interactions have essentially different

Bp(r) _  8p(x) Bu(r) _ [
kT o -—kBT/dr Su(r) g -_/dr G(r,r")

[ a6 w.x) = plw)pte’) + p5(x = 1)

o(r) / dr’p(r") g, ') — 1] + p(r).
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TABLE I. The liquid (p;) and solid (p,) densities, the
pressure (P) , the latent heat (T'AS) and the Lindemann
parameter (L) at coexistence at several temperatures (all in
LJ units). The results of the PWDA are compared with
computer simulations [25] (in parentheses) and with those of
Curtin and Ashcroft [22] (in square brackets).

kBT Pl Ps P TAS L
0.75 0.906 1.004 1.04 0.83 0.075
(0.875)  (0.973)  (0.67) (1.31)  (0.145)
[0.855]  [0.970]  [0.90]  [1.10]  [0.127]
1.15 0.946 1.040 5.90 1.23 0.079
(0.936)  (1.024) (5.68) (1.46)  (0.139)
[0.934)  [1.026] [6.40] [1.50]  [0.126]
1.35 0.966 1.055 8.65 1.37 0.081
(0.964)  (1.053)  (9.00) (1.88)  (0.137)
[0.960]  [1.045]  [9.10)  [1.70]  [0.126]

maps and they cannot be easily included in the same
description.

This work was supported by the Direccién General de
Investigacién Cientifica y Técnica of Spain, under Grant
No. PB91-0090.

APPENDIX

Let p and Vey(r) be the chemical potential and an
external potential, respectively; then we can define
u(r) = = Vet (). (A1)

Then, taking into account the expression of the density-
density correlation function

G(r,r') = p@(r,r') — p(r) p(r') + p(r') 8(r — 1),
(A2)

and its relation with the functional derivative of p(r) with
respect to u(r) [2]:

G(r,r') = kT 22E)

Su(r’)’ (A3)

we have

(A4)
(A5)

(A6)

Rearranging this equation we find the exact local-compressibility relation:
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kT dp(r)
p(r) dp ’
and with the approximation (2) we obtain our Eq. (3).

/dr'p(r’)[g(r, r)—1]=-1+

[1] T.V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19,
2775 (1979).

(2] R. Evans, Adv. Phys. 28, 143 (1979); R. Evans, in Inho-
mogeneous Fluids, edited by D. Henderson (Dekker, New
York, 1992), Chap. 5.

[3] A.D.J. Haymet and D.W. Oxtoby, J. Chem. Phys. 74,
2559 (1981).

[4] F. Igldi, G. Kahl, and J. Hafner, J. Phys. C. 20, 1863
(1987).

[5] W.A. Curtin, J. Chem. Phys. 88, 7050 (1988).

(6] P. Tarazona, Mol. Phys. 52, 81 (1984); 61, 798(E) (1987).

[7] W.A. Curtin and N.W. Ashcroft, Phys. Rev. A 32, 4356
(1985).

[8] P. Tarazona, Phys. Rev. A 31, 2672 (1985).

[9] M. Baus and J.L. Colot, Mol. Phys. 55, 653 (1985).

[10] J.F. Lustko and M. Baus, Phys. Rev. A 41, 6647 (1990).

[11] A.R. Denton and N.W. Ashcroft, Phys. Rev. A 39, 4701
(1985).

[12] M. Baus, J. Phys. Condens. Matter 2, 2111 (1990).

[13] A. de Kuijper, W.L. Vos, J.L. Barrat, J.P. Hansen, and
J.A. Schouten, J. Chem. Phys. 93, 5187 (1990).

[14] B.B. Laird and D.M. Kroll, Phys. Rev. A 42, 4810 (1990).

[15] A. Kyrlidis and R.A. Brown, Phys. Rev. A 44, 8141

(1991).

[16] J.P. Hansen and L.R. McDonald, Theory of Simple Lig-
uids (Academic, New York, 1986).

[17] H.C. Andersen, D. Chandler, and J.D. Weeks, Phys. Rev.
A 4, 1918 (1971).

[18] S. Toxvaerd, Mol. Phys. 26, 91 (1973).

[19] L. Mederos, E. Chacén, G. Navascués, and M. Lom-
bardero, Mol. Phys. 54, 211 (1985).

[20] J.J. Weis, Mol. Phys. 28, 187 (1974).

[21] H.S. Kang, T. Ree and F.H. Ree, J. Chem. Phys. 84,
4547 (1986); Y. Choi, T. Ree and F.H. Ree, J. Chem.
Phys. 95, 7548 (1991).

[22] W.A. Curtin and N.W. Ashcroft, Phys. Rev. Lett. 56,
2775 (1986).

[23] O. Gunnarsson, M. Jonson, and B.I. Lundqvist, Phys.
Rev. B 20, 3136 (1979).

[24] L. Verlet and J. J. Weis, Mol. Phys. 24, 1013 (1972).

[25] J.P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969).

[26] C. Marshall, B.B. Laird, and A.D.J. Haymet, Chem.
Phys. Lett. 122, 320 (1985).

[27] R. Ohnesosorge, H. Léwen, and H. Wagner (private com-
munication).



